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Abstract

A hybrid numerical technique is developed for electrically large pyramidal horn anten-

nas radiating in free space. A stepped-waveguide method is used to analyze the interior

surfaces of the horn transition. The Electric Field Integral Equation (EFIE) is employed

on the outer surfaces of the pyramidal horn including the radiating aperture. Meanwhile,

the Magnetic Field Integral Equation (MFIE) is used on the aperture to relate the aper-

ture fields and those in the horn transition. The resultant hybrid field integral equation

(HFIE) is solved numerically by the method of moments. This formulation is both accurate

and numerically stable so that high-gain microwave pyramidal horns can be analyzed rig-

orously. Far-field radiation patterns, both computed and measured, are presented for three

electrically-large X-band horn antennas. The comparisons demonstrate that this method is

accurate enough to predict the fine pattern structure at wide angles and in the back region.

Computed far-field patterns and aperture field distributions of two smaller X-band horns

are also presented along with a discussion on the validity of the approximate aperture field

distributions routinely used in the analysis and design of pyramidal horns.



I. Introduction

The horn antenna is the simplest and probably the most widely used microwave radia-

tor. It is used as the feed for large reflector and lens antennas in communication systems

throughout the world. It is also a high gain element in phased arrays. Since horn antennas

are highly accurate radiating devices, they are often used as standard-gain devices for the

calibration of other antennas. The application of electromagnetic horns has been explored

for nearly a century. Extensive investigations of horn antennas have been of increasing

interest during the past three decades. Some of the early research papers on horn antennas

are well documented in Love's collection[l]. In applications, the pyramidal geometry has

been a preferred configuration. Besides being a high-gain and high-efficiency microwave an-

tenna, the pyramidal horn exhibits some additional advantages. Its rectangular geometry

leads to ease of construction and to a low-cost device. The aperture size of the horn can

be adjusted to achieve specific beam characteristics with negligible changes in others. It is

also easy to excite the pyramidal horn with conventional microwave circuit devices. These

advantages distinguish the pyramidal horn as a preferred microwave radiator.

The analysis and design of the pyramidal horns are traditionally carried out by using

approximate aperture field distributions, and assuming that contributions from induced

currents on other parts of the horn surface are negligible. A quadratic phase term is usually

assumed to account for the flaring of the horn transition [2, 3, 4]. This approximate method

predicts fairly well the main-beam of the fax-field radiation pattern and the gain of the

antenna. Since reflections, mode couplings, and diffracted fields from the exterior surfaces

are not included, it does not predict very well sidelobes and the pattern structure in the

back region.

In the 1960's, the Geometric Theory of Diffraction (GTD), a high- frequency method,

was introduced to include edge diffracted fields. The two-dimensional GTD model presented

in [5, 6] yielded an improvement in the fax-field E-plane pattern over the approximate aper-

ture field method. A two-dimensional model for the E-plane pattern based on an integral

equation and the Moment Method was examined by Botha et al. in [7]. Although, the two-

dimensional models axe in better agreement with measured far- field E-plane patterns, they
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cannotduplicatethe H-planepattern in the backregionssincecouplingsof the diffracted

fieldsfrom both the E- andH-planeedgesarenot includedin the two-dimensionalmodels.

Finally, neither the approximateaperturefield methodnor the GTD arewell suitedfor

calculatingthe aperturefield distribution,VSWR,andcross-polarizedpatterns.

A rigorousanalysisof pyramidalhorn antennaswasdeemeda formidabletask in the

earlydevelopmentof hornantennas.Recentadvancesof thecomputationalcapabilitiesand

the popularity of the pyramidalhorn antennashaveencouragedthe developmentof more

accuratemodelswith improvednumericalefficiencies.The integral equationformulation

with a MomentMethod(MM)[8] solutionhasbecomea powerfultool in modelingcomplex

electromagneticfield problems. MM hasbeenusedto analyzean aperture in a ground

plane[9,10]and a groundedaperturein the presenceof a thin conductingplate[ill. It has •

beenappliedto pyramidalhornantennas,bothwith andwithout corrugations,mountedin

a groundplane[12,13].Thepresenceof a groundplanesimplifiesthe analysis;howeverfor

mostapplications,thehornantennaisa stand-aloneradiatingelement.Without theground

plane,electriccurrent is inducedon the outer surfaceswhichhasa significantimpacton

the patternat wideanglesandin therearhemisphere.

Completethree-dimensionalmodelshavebeendevelopedfor electricallysmallpyrami-

dal horn antennashasbeenanalyzedusingMM[14],and smallH-planesectoralhornsand

X-bandstandard-gainhornsby the finite-differencetime-domainmethod(FDTD)[15, 16].

For high gainpyramidalhorn antennas,it is a difficult task to modelantennasveryaccu-

ratelywith asimpleextensionof existingnumericalelectromagneticmethods,suchasthose

describedin [14,15,17,16].Themainproblemin modelingthetransitionfrom a relatively

smallfeedingapertureto a muchlargerradiatingapertureis the useof anefficientnumber

of elements.The electriccurrentdensitieson the interior surfacesof the horn transition

becomestoo complexto bemodeledeffectivelyusingthesemethods.

A full-wavestepped-waveguidemodeland HFIE methodto analyzeboth the interior

flaring and the exterior current contributions was previously developed by Kiihn et al [18]

for conical horns, whose formulation is simplified due to their axial symmetry. This paper

follows a similar procedure as [18] to solve horns with square and rectangular geometries.



This full-waveformulationprovidesflexibility andincludesall of the important detailsof

a practical pyramidalhorn antenna. It representsthe first full-wavemethodto include

the currentdensitieson all conductingsurfacesof a pyramidalhorn whicharenecessary

to predict the finepattern structurein regionsof low-levelradiation,suchasthosein the

outermostminorlobes.

II. Theory

Figure 1 illustrates the geometry of a typical pyramidal horn antenna. The field problem

can be separated into two parts. The first is the transition from the feeding waveguide to

the radiating aperture. A complete full-wave approach to this part of the problem is to

represent the transition as a series of stepped-waveguide sections as shown in Figure 2.

Mode matching is performed by rigorously enforcing the boundary conditions at each step.

The result is a scattering matrix for each step which can be combined to obtain a scattering

matrix for the entire transition region.

The second part of the problem is an aperture radiating in the presence of the exterior

conducting surfaces, as shown in Figure 3. Interactions between the aperture fields and the

exterior surfaces of the horn will impact the radiation pattern as well as the field in the

transition region. The interaction is accurately analyzed by using the EFIE on the exterior

surfaces of the horn. The equivalence principle is introduced to formulate the magnetic

field integral equation on the radiating aperture which combines the interior field transition

problem with the exterior radiation.

Because of the decomposition of the problem into interior and exterior part, there is

sufficient flexibility in choosing the methods and numerical models for the solution of each

parts. Therefore, an accurate analysis of the transition and the exterior surfaces can be

implemented robustly and efficiently.

A. Interior Horn Transitions

An accurate analysis of waveguide transitions has been an interesting research topic in

the microwave circuit design [19, 20, 21, 22]. The available numerical approaches can be



dividedinto twoclasses:anumericalsolutionofthesystemof ordinarydifferentialequations

[20,23], and the steppedwaveguidemodelwith a full-wavemode-matchingtechniqueon

steppedjunctions [19, 13,23, 18]. The numericalsolutionof the differentialequations

must be performedwith a finite advancingstep size,and due to the numericalproblem

causedby evanescentmodes,thetaperhasto bedividedinto severalsections.The hybrid

matrix of eachsectionneedsto becomputedseparately,then translatedandcombinedinto

a scatteringmatrix. On the otherhand, the stepped-waveguidetechniqueusesa finite

numberof subdivisionsof waveguidestepsto approachthe continuoushorn taper. Within

eachwaveguidestep,the waveguidesectionis uniform. The scatteringmatricesof each

waveguidestepare relatedto eachotherby the electromagneticboundaryconditionson

the discontinuousjunctionsconnectingthem. The combinationof the scatteringmatrices

of all the stepsgivesthe total scatteringmatrix of the horn transition. As examinedby

[21]and [23],thenumericaltechniquethat solvesthe first-orderdifferentialequationyields

resultswith the sameaccuracyasgivenby the stepped-waveguidetechnique,whenthe

sizeof the stepsis sufficientlysmall.The validity of the stepped-waveguideapproximation

to simulatethe continuoushorn transition hasbeenjustified in [12, 13,23, 18,19]. The

computationaleffort for the twoapproachesis aboutthe same.

In this paper,the steppedwaveguidetechniqueis employedfor its advantagein the

numericalstability. Figure 2 representsa typical steppedwaveguidemodelof the horn

transition. The continuoustransition is approximatedby a numberof cascadedstepped-

waveguides,andfor apyramidalhorntransition,eachstepisasectionof rectangularwaveg-

uide. Electromagneticfielddistributionsin eachoftherectangularsectionscanbeexpressed

asthe superpositionof all possibleTMz and TEz modes. Moreover, the TMz and TEz

modes in each region can be generated by the z components of two vector potentials[24]

Fz = , (Am. + (1)
rn----l,M
n=O,N

Az = _ _ (C,-,,_e -ja*z- D_,e'ia'Z)h,,,_(x,y)
rn=l,M
.=_,N

(2)



2 cos(Z x) cos(Z y)
em, (x,y) -  cx/ab(1 + ;

m if ll _ V_ x
a

2 sin(/3_x) sin(/3yy)

1 if n=O_ + _ = w2#e; _no = 0 otherwise

The electric and magnetic fields are obtained from the vector potentials as described in

[24]. At the stepped waveguide junction, the boundary conditions relating the two slightly

differently sized waveguides are

E(2):x Y)lon S (3)EO)(x Y)lon S = _,_ 'X,y\ '

H(2):x ,,_l (5)HO)tx Y)]on S = x,u_ ,_/Ion S2:'ty k ,

where S is the area of the smaller waveguide section, and AS the "ring" area of the larger

waveguide section extracting S as illustrated in Figure 4. Testing the boundary conditions in

(3) -(5) by the corresponding expansion functions (this process is equivalent to a full-domain

Galerkin's Method), the boundary conditions uniquely define the relation between the full-

wave expansion coefficients on both sides of the junction. The details of the matching at the

discontinuities and the combination of the scattering matrices are available in[21, 19, 18,

12, 23, 13]. If all incident full-wave modes are rhpresented by a vector a and the reflected

full-wave modes by a vector b, the two are related by the total scattering matrix for the

horn transition as

a(A) ---- _:(T) s(T) b(A) (6)
_21 22

where superscripts '(F)' and '(A)' denote, respectively, the full- wave coefficients at the feed

junction and radiating aperture, and the superscript '(T)' denotes the total contribution of

the horn transition. Although pyramidal horns are generally excited by the dominant TErn

mode from the feeding waveguide, higher order TE,,_,, and TMm,, modes axe generated in

the transition. For horn geometries with symmetrical flaxings in both dimensions, only

those modes which have m = 1,3,5,7,...,M and n = 0,2,4,6,...,N (n = 0 for TE modes



only) are generated in the transition. The coupling between TEmn and TMm,_ modes is

automatically included in the full-wave analysis of the stepped junctions.

There are two factors which affect the accuracy of the stepped- waveguide approxima-

tion: the size of the steps and the number of terms in the series (M and N in (1)-(2)). Past

experience demonstrates that a convergence is achieved by limiting the maximum size of

the steps to A/32. The choice of M and N should be based on the flare angle and length of

the steps. It is important to keep a sufficient number of terms in the series because higher

order modes at the aperture contribute significantly to the radiation pattern in the back

regions. Therefore, significant more terms are needed for this analysis than that performed

in [12, 13]. An empirically derived formula for determining M and N is the nearest higher

integer of

(M, N) - 3(A, B) + 1.5 (7)

where A and B are the dimensions of the horn aperture. When analyzing a high-gain horn

antenna, the required number of modes determined by (7) is large, and if used through-

out the matching process, the computation could become very inefficient. To reduce the

computation time, a variable number of modes can be used along the transition. At each

step, the number of modes are determined using the same criterion given for the aperture

in (7) except A and B are replaced by the step dimensions. Therefore, only a few modes

are required near the feed and approach (7) as the computation proceeds toward the horn

aperture. This process preserves accuracy, and for the geometries considered here, reduces

the computation time to about one eighth that of a constant number of modes.

B. Integral Equations and Moment Method

The radiation from the aperture and the outer surface of the pyramidal horn are ana-

lyzed using a Moment Method solution to integral equations [8, 24]. Since the outer surfaces

of a high-gain pyramidal horn antenna are usually 120)_2 to 200_ 2, a straight-forward Mo-

ment Method solution is a very computationally involved process. Therefore, a variety of

theoretical and numerical techniques are introduced to enhance the efficiency and accuracy
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of the solution.

1. The Hybrid Field Integral Equation

Figure 3 presents the general problem of a radiating aperture in a conducting body. In

Figure 3, the fields internal to the aperture are represented by the full-wave vectors a (the

incident mode) and b (the reflected modes). To relate the internal and external fields on

the aperture, Love's field equivalence principle [24] is introduced. The radiating aperture is

replaced by a sheet of perfect electric conductor with a magnetic current density

M(a (A) + b (A)) = -n × Ei'_(a (A), b (A)) (8)

where n is the unit vector normal to the aperture, and Ei'U(a (A), b (A)) is the electric field

internal to the aperture. Equation (8) insures the continuity of tangential electric fields

across the aperture. The magnetic current density M is radiating in the presence of the

closed conducting surfaces of the horn. An electric surface current is then induced to

maintain zero tangential electric field on the external surfaces of the horn. Therefore, the

continuity of the tangential magnetic field across the aperture and the boundary conditions

on the external surfaces require that

ext ext
Ht_,,(M) + Ht.,.(J)

east cxtE,o (J) + E,o (M)

.,int/ (A) b(A)) the aperture (9)---- l'l.tan ( a _ on

= 0 on the external surfaces and the aperture (10)

where field components with 'ext' denote the fields on the free space side of the aperture.

The boundary conditions of (8)-(10) derived from Love's field equivalence principle satisfy

the uniqueness theorem and define an equivalent to the actual electromagnetic problem.

2. Moment Method Solutions

In the Moment Method solution of the hybrid field integral equations of (8) and (10), sub-

sectional quadrilateral roof-top patch modes are chosen as both the expansion and testing

functions for the electric current density distribution on the exterior surfaces of the horn.



To exploit the Toeplitzpropertyof the impedancematrix elements,magneticcurrentden-

sity on the apertureis alsoexpandedandtestedwith the sameroof-toppatch modesas

thoseof electriccurrentmodeson the aperture.Thus,impedanceand admittancematrix

elementsfor the integralequationsolutionon the apertureare relatedanddo not haveto

be computedtwice. A moredetailedexplanationof sucha processcanbe found in [17].

Sincetheaperturemagneticcurrentdensityis relatedto thefull-wavemodesa (A} and b (A),

a conversion matrix is introduced to transform the roof-top patch modes into eigen modes

of the aperture field in (8)

Nj NM NA

J = Y_ JiP_ M = y_ Mimi = _ Mi ZV/jP M (11)
i-----1 i=1 i j=l

where PJ and pM are the subsectional roof- top patch modes for the i-th electric and j-th

magnetic current density modes, respectively. NM represents the total number of full- wave

expansion modes of both TE and TM in the aperture, NA represents the number of roof-top

patch modes for the aperture magnetic current density and Nj represents the total number

of roof-top patch modes for the electric current density on the entire outer surface of the

horn including the aperture. IV/j] is the conversion matrix from the distribution functions of

the aperture modes mi expressed by emn(x, y) and hm,_(x, y) in (1) and (2) to the roof-top

patch modes. Testing (10) with P_ leads to

s =' el, =' (12)- Etan(M ) >< Pi, Eta,,(J) >=<

Substituting the expansion representation of J and M into (12), yields a matrix with

elements given by

Zij 1 pj _,rpj_ lfs fsip/g _t J= -- < --i,_ta,,t--_ J > = - • Et_,,(P j)dsidsj (13)
77

Qkl =< _t k,aatanl, Xl ] _ -_

k I

A normalization factor of l/r/is introduced in computing the matrix elements of Zij in (13)

to reduce rounding errors in combining big matrices, which is very helpful in maintaining the

numerical stability of the MFIE in (9). Efficient and accurate algorithms for evaluating the
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four-foldintegralof (13)and(14)arebrieflydescribedin AppendixA. Sincetheexpansion

andthetestingmodesarethesame,the impedancematrixZ isacomplexsymmetricmatrix.

It canbe filled anddecomposedwith only half of the CPUtime neededfor the full-matrix

system[25,26]. The solutionof (12) leadsto

where

J = IZ-1UM (15)

U = QV t (16)

and the superscript 't' signifies transpose. J is the vector representation of the subsectional

roof-top patch modes and M the aperture field modes. The transformation from Q to U

in (16) reduces the number of right-hand side solution from NA to NM (NM is generally a

small fraction of NA). Again, testing (9) with mi, the MFIE can be expressed as

,xt ,xt -*i,_t, (A) b(A)) (17)< m_,H,_n(M) > + < rni,Htan(J) >=< mi, rtta,_ta , >

Using dualityforthe reactionof the aperturemagnetic currentdensitymodes[17],reci-

procityforthe reactionsbetween the aperturemagnetic modes and the outersurfaceelectric

modes, and the relationof (13),equation(17)can be writtenas

b(A) = s(A)lla(A) = [y(A) + yint]-l[yint _ y(A)]atA ) (18)

where I is the identity matrix, y(A), and y(i,u) the aperture admittance matrices defined

y(A)(a(A)+b(A)) =

yint(a(A) _ b(A)) =

by

[vz(A)v t + utz-'u][< mi, M(a (A) + b (A)) >] (19)

[< ..int, (A) b (A)) >1 (20)mi, _?rltan(a -

Z (A) is a subset of Z for electric current density modes on the aperture. Using (18) and

(6), the incident aperture field distribution coefficients (denoted by a vector a (A)) and the

reflected wave at the feed (denoted by a scalar coefficient b(F)10 ) are given by
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a (A) ---- (I - '-'22cI(T)_(A)'_-l_(T)a(F)'-') "-'21 lo (21)

b(F)10 -= tfs(T)ll-1-s(T)s(A)(I12_. -- s(T)s(A))-1''(T)'22 _21 Jal0(F) (22)

where ,,(F) is the magnitude of the incident TElo mode in the feeding waveguide. Equations'*10

(22), (21), (18), and (15) specify the antenna reflection coefficient (or return loss), the aper-

ture magnetic current density distributions, and the electric current density distributions

on the exterior surfaces. The radiated electric field can be determined from the current

density expansions and the gain computed from

[E(J, 0, ¢) + E(M, 0, ¢)12 (23)

V(O,¢) = lOlog m 4rrlai0F)12_/1 _ (,_)2

where fc is the cut-off frequency of the feeding waveguide, and f the operating frequency.

III. Results and Discussions

Five X-band high-gain pyramidal horns were chosen to be analyzed. For the quadrilat-

eral roof-top expansion of the exterior surfaces of the horn at 10 GHz, Table 1 gives the

dimensions and typical computed data for a maximum segment length of 0.15)_ for the 10-

and 15-dB standard gain horn, and 0.2,k for the other three horns. The CPU times are

typical for an IBM R6000-350 workstation. Table 2 lists gains and VSWR's obtained by

the approximate aperture method and the Moment Method (MM). As expected, differences

are more obvious for the 10-dB gain horn since the approximate method in [4] does not

work very well for such a small horn. Table 3 lists comparison of approximate, measured,

and predicted gains and VSWR's for the 20-dB X-band standard gain horn antennas at

three different frequencies. Note that the gains listed in the tables have almost a constant

0.2 dB differences between the moment method solution and the measured data. Nearly

the same amount of difference is observed between computed and measured gains for the

other two large X-band square aperture horns. It should be mentioned that the same 20-dB

standard-gain horn is used as the calibration antenna. Therefore, if there is any inaccuracy

in the calibration data, all measured data sets are affected. The agreement between the
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Table1: Typicaldataof pyramidalhornantennasanalyzed

10-dB Standard-gain horn

15-dB Standard-gain horn

20-dB Standard-gain horn

5-inch square horn

7-inch square horn

Pyramidal horn dimensions EFIE Matrix CPU

A B L size(# of rows) (in hrs)

1.58" I.15" 2.01"

2.66" 1.951' 5.46"

4.87" 3.62" 10.06"

5.04" 5.06" 10.5"

7.0" 7.0" 12.1"

820 0.38

1600 0.61

4300 1.8

5700 2.6

9600 11.3

Table 2: Comparison of VSWR's and gains of 10- and 15-dB standard gain horns

8.2 GHz 10.3 GHz 12.4 GHz

VSWR Gain VSWR Gain VSWR Gain

10-dB Approximate N/A 8.98 dB N/A 11.13 dB N/A 12.81 dB
Horn MM 1.18 9.75 dB 1.17 11.63 dB 1.20 13.48 dB

15-riB Approximate N/A 13.83 dB N/A 15.83 dB N/A 17.42 dB

Horn MM 1.11 14.23 dB 1.14 15.94 dB 1.10 17.58 dB

Table 3: Comparison of VSWR's and gains of the 20-dB standard gain horn

9 GHz 10 GHz 11 GHz

VSWR Gain VSWR Gain VSWR Gain

Approximate N/A 19.77dB N/A 20.59dB N/A 21.31dB
MM 1.082 19.98dB 1.057 20.63dB 1.031 21.46dB

Measured 1.10 19.72dB 1.06 20.46dB 1.04 21.24dB

computed and measured VSWR's is excellent. Figures 5 to 6 present comparisons of E- and

H-plane patterns obtained from the moment method and the approximate method for the

two smaller X-band horns. The approximate patterns are computed using the method out-

lined in Chapter 12 in [4], except that the free-space wave impedance in (12.1d) is replaced

by the guide wave impedance at the aperture. As expected, the agreement of the patterns

in Figure 5 is not as good as in Figure 6. Figure 7 shows the comparison of the moment

method, approximate, and measured E- and H-plane patterns for the 20-dB standard gain

horn. Since the horn is much larger than the previous two horns, the approximate method

compares well with measurements in the first few lobes of the patterns. However, patterns

predicted using the moment method compare much better with the measured patterns. The
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improvementoverthe approximatemethodis moreevidentin the backregions.

In 1965,Russoet. aI. [5] presentedinvestigationsinto theeffectof differentwall thick-

nessesonE-planepatternsof pyramidalhornusingGTD.Figure8presentsourcomparisons

of the E- and H-planepatternsof the 5-inchsquareX-bandhorn at 10.0GHz with and

without modelingtheaperturewallthickness.Resultsin thefiguresagreewith Russo'scon-

clusionfor the E-planeradiationpatterns.However,for the H-planepatterns,thepredicted

patternsof thethin wallmodeldonot agreein thebackregionwith the measuredpatterns

aswellasthoseof the thick wallmodel. Thethick wall modelaccuratelypredictsthe fine

ripplestructurein thebackregionwhilethethin wallmodeldoesnot. It isourobservation

that the aperturewall thicknessplaysasignificantrolein affectingthe fineripplestructures

of the H-planepatterns. The additionof the outer surfaceof the feedingstructurein the

EFIE hasonlya negligibleeffecton thepatternsof the hornantennasanddoesnot change

anyripple structurein thebacklobes.

Anotheradvantageof the momentmethodsolutionis the ability to examinethe aper-

ture field distribution. Figures9 to 11 representcomputedaperturefield (E_ and Hx

components) distributions of the three X-band pyramidal horns at 10 GHz. Contrary to

the approximation that the aperture fields are basically TElo with parabolic phase fronts,

the distributions computed by the moment method demonstrate a much more complicated

shape. The deviations from the approximate aperture distributions are more evident for

Hz. Figures 9 to 11 also illustrate that as the electrical size of the aperture become larger,

the amplitude distributions become more complicated, but the phase distributions approach

a parabolic phase front as assumed by the approximate method.

As presented in the comparisons between computed and measured results, the full-

wave and HFIE method has demonstrated an excellent accuracy in simulating both small

and large pyramidal horn antennas. One of the requirements for this method in solving

large pyramidal horns is the computer memory. In some workstations such as the IBM

RS6000/350, the fast data transferring capability between the memory and the hard-disk

enables the out-of-core memory matrix solver for a symmetric complex system to run nearly

as fast as the in-core solver. If the symmetric property of the electric current distribution
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on the exteriorsurfacesis utilized, thememorycanbe reducedto 1/8 while the CPUtime

canbedecreasedto about 1/4 of thevalueslisted in Table1.

IV. Conclusions

A full-wave hybrid field integral equation method has been developed to analyze

pyramidal horns. The model includes the current induced on the exterior surfaces and has

been verified by a comparison of computed and measured data. For accurate results, the

following guidelines are suggested:

• include a sufficient number of higher order modes in the full- wave analysis. The

required number of modes can be determined using the empirical formula of (7).

• limit the size of the stepped discontinuity to less than ),/32 when approximating the

continuous horn transition.

• limit the largest segment size of the roof-top patch to less than 0.2), to ensure an

effective and accurate solution of the electric field integral equation on the outer

surfaces of the pyramidal horn.

• include the wall thickness in the segmentation of the outer surface.

This study shows that the approximate method found in most antenna books is not

very accurate in predicting gains and patterns of the pyramidal horns of small electrical

size. However, as the electrical size gets larger, the approximate method becomes more

accurate in predicting the gains and the first few minor lobes of the far-field radiation

patterns of a pyramidal horn. The aperture field distributions of pyramidal horns are much

more complicated than those assumed in the approximate formula. However, the phase

distribution approaches a parabolic distribution for apertures of large electrical sizes.

Although the moment method solution is somewhat computationaily intensive, a widespread

application of high power workstations, such as the IBM RISC6000 platforms, is making it

more effective to serve as a computer-aided analysis and design tool. Although the present

development has concentrated on pyramidal horn antennas, the model can be extended to

analyze wide-band dual-ridged, and quadruple-ridged horns.
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V. Appendices

A. Evaluation of the Impedance Matrix Elements in Moment Method

The electric fields due to surface electric and magnetic current distribution needed in (13)

and (14) can be written as

E(J)= + vv'.

E(M) = - Jfs, M(s') × V#ds' (A.2)

where primed coordinate represents the source coordinate and • = e-Jf_R/4_rR is the free-

space Green's function; J(s') and M(s') are surface electric and magnetic current density

on S', respectively. Substituting (A.1) and (A.2) into (13) and (14), respectively, using the

current continuity condition, the impedance matrix elements can be expressed in the form

of

Zij = j_3 /,[(PJ.PJ)- (V.V_)(V'.Vj)]¢dsjds, (A.3)
,Js 

where n isthe unit directionalvectorof (pS × pM). Ev_luationsof (A.3) and (A.4) can

be efficientlycarriedout by using Taylor'sexpansionsof the kernelfunctions• and e-j/_R

at the centerof the two patches and an_ytical integrationscan be found for individual

terms of the Taylor'sexpansions.Therefore,only one of the surfaceintegr_Isneeds to be

evaluatednumerically.
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Figure 3. HFIE model of the outside surface of the pyramidal horn.
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